（公財）かがわ産業支援財団

地域共同研究部年報

令和 2 年度

はじめに

公益財団法人かがわ産業支援財団は，県内企業の総合的な支援機関として，香川県におけ る新産業の創出や地域企業の経営基盤の強化，産業技術の高度化，科学技術の振興などを図 るため，創業や新分野への進出，研究開発，国内外への販路開拓，生産性向上，人材育成，知的財産活用など企業の多様なニーズに応じたきめ細かな支援に取り組んでいます。
また，昨年来のコロナ禍の中，新型コロナウイルス感染症により大きな影響を受けている県内企業に対する相談支援を行らとともに，ウィズ・コロナ社会に対応するための商品開発•技術開発の支援などにも取り組んでいます。引き続き，香川県をはじめ関係機関と連携協力し，事業の継続•回復に前向きに取り組む県内企業を積極的に支援してまいります。

さて，当財団の地域共同研究部（RIST かがわ）では，その特長的な保有技術である超臨界流体技術やマイクロ波技術，また環境関連技術等を活用し，調查•研究，共同開発研究，開発可能性調查研究，受託研究，技術指導実験を行らとともに，保有研究施設•機器の一般開放などにより，県内企業の研究開発や事業化•商品化を支援しています。また，本県産業 の成長のエンジンの一つとされる食品分野において，その基幹産業である「冷涷食品産業」 における技術向上や，健康志向に対応し魅力や競争力のある「機能性食品開発」を支援する ため，技術相談，技術支援を行らとともに，講演会の開催等を通じて最新技術等の情報提供 に努めています。加えて，機能性表示食品については，消費者庁への届出支援も行っていま す。このほか，大学や公設試験研究機関等の関連機関との連携や橋渡しを行うなど，効果的，効率的な支援にも努めているところです。

ここに，令和 2 年度の地域共同研究部年報（業務報告及び研究報告）を取りまとめました ので，ご高覧いただければ幸いに存じます。
今後とも，地域共同研究部においては，地域産業の振興•発展に貢献するため，これまで蓄積してきた技術やノウウウの活用により当財団研究部門としての機能を最大限に発揮し，県内企業の研究開発•新商品開発等の支援に取り組んでまいりますので，皆様のより一層の ご理解とご協力をお願い申し上げます。

令和 3 年 6 月

公益財団法人かがわ産業支援財団理事長 安松 延朗

目 次

［業務報告］

1．総説 1
1－1 沿革 1
1－2 土地•建物 1
1－3 組織 3
$1-4$ 業務概要 4
$1-5$ 職員 4
1－5－1 職員の配置状況 4
$1-5-2$ 職員名簿 4
2．研究開発事業 5
2－1 調査•研究 5
2－2 開発可能性調査研究（F S ） 5
2－3 受託研究 5
2－4 産業財産権（特許） 6
3．食品産業支援事業 7
3－1 機能性食品開発支援事業 7
3－1－1 かがわ機能性食品等開発研究会 7
3－1－2 機能性表示食品届出支援 8
3－2 冷凍食品産業支援事業 9
3－2－1 かがわ泠凍食品研究フォーラム 9
4．相談•指導業務 10
4－1 技術相談 10
4－2 技術指導実験 10
4－3 研究機器の一般開放 10
$4-4$ 機器利用講習会 11
4－5 研究発表会 11
4－6 「科学と発明」おもしろ体験学習 12
4－7 講師•審査員等派遣 13
5．新かがわ中小企業応援ファンド等事業 15
6．参考資料 16
6－1 研究成果の事例 16
6－1－1 主な製品化事例 16
6－1－2 プロセス開発事例 22
6－1－3 新素材の開発事例 29
6－1－4 装置の開発事例 30
6－2 共同研究•受託研究等制度の概要 31
6－2－1 共同開発研究型プロジェクト 31
6－2－2 開発可能性調査研究（F S ）型プロジェクト 33
6－2－3 受託研究 33
6－2－4 技術相談•技術指導 34
$6-2-5$ 機器開放（開放機器使用料） 35

［研究報告］

1 超臨界技術によるプラスチック材料への機能性付与に関する研究（II） —親油性セルロース素材の開発—中西 勉39

1．総 説

1－1 沿革

平成 7 年 7 月
岡山県，香川県，徳島県が共同で「東中•四国創造的経済発展基盤地域（スーパー・テクノ・ゾーン：S T Z ）」整備方針を策定し，その中で前身の高温高圧流体技術研究所を中核研究施設 として位置づける。（平成 9 年 3 月 高知県参加）
平成 7 年 8 月 産学官の関係者により，当研究所の設立発起人会を開催
平成 7 年 12 月 財団法人 香川県産業技術振興財団附属研究所として設立
平成 8年 9月 研究所の建設工事起工式を挙行
平成 9 年 9 月 研究所落成
平成13年4月 財団法人香川県産業技術振興財団を，財団法人かがわ産業支援財団に名称変更
平成 22 年 4 月高温高圧流体技術研究所を，地域共同研究部に名称変更

平成 23 年 4 月財団法人かがわ産業支援財団を，公益財団法人かがわ産業支援財団に名称変更
平成 27 年 6 月 地域共同研究部内に新機能性表示食品開発相談センターを設置

1－2 土地•建物

（1）所在地 香川県高松市林町2 2 1 7 番地 4 3（香川インテリジェントパーク内）
（2）敷地面積
5，000 m ${ }^{2}$
（3）建物の概要
建物は，研究管理棟と実験棟から構成されており，構造•建物面積等は次の とおりである。

施設	構造	建築面積 $\left(\mathrm{m}^{2}\right)$	延床面積 $\left(\mathrm{m}^{2}\right)$
研究管理棟	鉄筋コンクリート造2階建	1,049	1,952
実験棟	鉄骨造平屋建	687	687
合 計		1,736	2,639

地域共同研究部の平面図，アクセス図
＜平面図＞

2 階平面図

1 階平面図

＜アクセス図＞

1－3 組織

（令和 3 年 3 月 31 日現在）

1－4 業務概要

平成 22 年 4 月に「高温高圧流体技術研究所」を「地域共同研究部」に名称変更し たことを契機に，事業化を念頭においた共同研究等を行うなど，県内企業の課題解決 に向けた技術支援機関と位置づけ，研究以外の支援事業も積極的に行っている。
令和 2 年度は，研究開発事業，食品産業支援事業（機能性食品開発支援事業，冷凍食品産業支援事業），相談•指導等業務（技術相談，技術指導実験，研究機器一般開放，機器利用講習会，技術講演会，一般開放）のほか，新かがわ中小企業応援ファン ド等事業（新分野等チャレンジ支援事業）業務を実施した。

1－5 職員

1－5－1 職員の配置状況（令和 3 年 3 月 31 日現在）

区分	事務	技術	計
参与（兼）地域共同研究部長		1	1
参与（兼）研究管理課長	1		1
参事（兼）研究開発課長 （兼）総括研究員		1	1
主席研究員		2	2
事務補助	1		1
研究アドバイザー		2	2
事業化支援アドバイザー			2
計	2	8	10

1－5－2 職員名簿（令和 3 年 3 月 31 日現在）

所 属	職 名	氏 名	備 考
地域共同 研究部	参与（兼）部長	末澤 保彦	令和 2 年 4 月 1 日昇任 （研究開発課長から）
研究管理課	参与（兼）課長	西川 敏博	令和 2 年 4 月 1 日採用
	事務補助	岡本 恭子	
研究開発課	参事（兼）課長 （兼）総括研究員	中原 理栄	令和 2 年 4 月 1 日採用
	主席研究員	中西 勉	
	主席研究員	朝日 信吉	
	研究アドバイザー	加藤 俊作	
	研究アドバイザー	太田 泰弘	
	事業化支援アドバイザー	久保 善美	
	事業化支援アドバイザー	関谷 敬三	

2．研究開発事業

2－1 調査•研究

	研究テーマ	担当研究員	研究の概要
A	超臨界流体技術応用研究 「超臨界技術によるプラ スチック材料への機能性付与に関する研究 （II）」 －親油性セルロース素材の開発－	主席研究員中西 勉	超臨界流体を応用した親油性セルロ ースナノファイバー（CNF）開発及 び事業化研究において，炭酸がス超臨界処理によるCNF親油化反応実験等 を行った。撥水性が付与でき，親油化 CNFが得られたので，今後，フィル ム化をめざして樹脂との混錬や薄膜化 を検討していく。
B	マイクロ波技術応用研究「地元産冷凍サヨリの氷点以下でのマイクロ波処理による小骨の脆弱化研究」	主席研究員朝日信吉	財団で保有しているマイクロ波処理技術の特許を応用し，地元産冷凍サョ リの氷点以下でのマイクロ波処理によ る小骨の脆弱化実験を行った。圧縮試験の結果，若干柔らかくなった。

2－2 開発可能性調査研究（F S ）

種別	研究テーマ	担当研究員	参加企業
F S II	環境修復に関する研究開発	主席研究員：中西 勉	1 社（県内企業）

2－3 受託研究

	研究テーマ	担当研究員	参加企業
A	半導体発振器を用いた低温連 続反応の調査および最適反応 条件の確立	主席研究員：朝日信吉	1 社（県内企業）
B	ヨモギの商品化研究	主席研究員 $:$ 朝日信吉	1 社（県内企業）

2－4 産業財産権（特許）

平成11年度から31年度までに，103件の特許出願を実施しており，この内 38 件 が登録特許となっている。

令和 2 年度では， 1 件が特許登録となり，実施予定のない 2 件の特許放棄を行い，登録特許は6件となった。

これまでの特許出願等の状況は次のとおりである。

（1）出願件数	（2）特許登録数	（3）権利放棄数	登録特許保有数（2）－（3））
103 件（0）	38 件（1）	32 件（2）	6 件

※（ ）内は令和 2 年度の件数
（1）年度別特許出願等状況

年 度	出願 件数	出 願 区 分		特許登録件数	
		単独出願	共同出願	登録数	権利放棄数
令和 2 年度				1	2
令和元年度					5
平成 30 年度	2		2	1	5
平成 29 年度	2		2	1	7
平成 28 年度	2		2		4
平成 27 年度				1	5
平成 26 年度				1	2
平成 25 年度				3	1
平成 24 年度	1		1	1	
平成 23 年度				2	
平成 22 年度	1		1	4	
平成 21 年度	5	2	3	12	1
平成 20 年度	5		5	4	
平成 19 年度	7	3	4	3	
平成 18 年度	8	2	6		
平成 17 年度	5	1	4	2	
平成 16 年度	13	5	8	2	
平成 15 年度	10	4	6		
平成 14 年度	13	9	4		
平成 13 年度	10	8	2		
平成 12 年度	16	3	13		
平成 11 年度	3		3		
合 計	103	37	66	38	32

（2）令和 2 年度登録特許

発明の名称	登録年月日登録番号	特許権者	かがわ産業支援財団発明者
マイクロ波乾燥藍葉，その製造方法 およびその用途	令和 3 年 1 月 19 日第 6826397 号	（公財）かがわ産業支援財団 $1 / 10$四国計測工業（株） 9／10	朝日 信吉

（3）登録及び出願中の産業財産権（令和 3 年3月31日現在）
（1）登録特許

発明の名称	登録年月日登録番号	特許権者	かがわ産業支援財団発明者
レンズの製造方法	$\begin{gathered} \text { H21.12.18 } \\ \text { 特許第 } 4426870 \text { 号 } \end{gathered}$	かがわ産業支援財団	中西 勉畑 和明森吉 孝加藤俊作
繊維構造物の製造方法	$\begin{gathered} \text { H22. 10.29 } \\ \text { 特許第 } 4615887 \text { 号 } \end{gathered}$	かがわ産業支援財団	中西 悗畑 和明森吉 孝加藤俊作
マイクロ波照射による魚骨の軟化方法	$\begin{gathered} \text { H28.2.26 } \\ \text { 特許第 } 5890612 \text { 号 } \end{gathered}$	かがわ産業支援財団 （株）キョーワ	朝日信吉
ゴマ由来の水熱処理抽出物の製造方法	H29． 4.7 特許第 6120531 号	かがわ産業支援財団 かどや製油（株）	中西 勉
ゴマ由来原料抽出物お よびその利用物品	$\begin{gathered} \text { H30.4.27 } \\ \text { 特許第 } 6329658 \text { 号 } \end{gathered}$	かがわ産業支援財団 かどや製油（株）	中西 勉
マイクロ波乾燥藍葉， その製造方法およびそ の用途	R3．1． 19特許第 6826397 号	かがわ産業支援財団四国計測工業（株）	朝日信吉

（2）出願中特許 公開3件（優先権主張特許を含む）

3．食品産業支援事業

3－1 機能性食品開発支援事業

機能性食品に係る県内企業の研究開発や商品開発の取り組みを支援することを目的として，調査研究，技術相談等の取り組みを実施した。

3－1－1 かがわ機能性食品等開発研究会

生理機能に着目した食品や化粧品（以下「機能性食品等」という。）の開発を推進す るため，産学官が連携して機能性食品等の開発に資する事業を実施することを目的 として，平成 25 年 7 月に「かがわ機能性食品等開発研究会」を設立した。

「かがわ冷凍食品研究フォーラム」と合同でシンポジウムを開催し，機能性食品等 に係る県内企業の研究開発や商品開発の取組みを支援した。

かがわ泠凍食品研究フォー ラム・かがわ機能性食品等開発研究会第 8回合同シンポ ジウム	日時 令和 2 年 10 月 22 日（木） $13: 30 \sim 16: 00$ 場所 サンメッセ香川 中会議室 ○講演 （1）「バリアシュリンクフィルムを用いたガスパック包装に よる食品の消費期限延長と食品ロス削減並びに食品包装用 ラミネートフィルムの動向」 大倉工業株式会社 合成樹脂事業部商品化グループ 商品開発課長 阪内 邦夫氏， ラミネート技術課長 筒井 淳浩 氏 （2）「HACCP を活かす考え方とやるべきこと」 公益社団法人 香川県食品衛生協会 専務理事（兼）事務局長 松本 幸三 氏 （3）「食品衛生法改正について—HACCP の制度化，営業許可制度 の見直し，営業届出制度の創設等—」 香川県健康福祉部生活衛生課食品衛生グループ 主任 池田 光広 氏 ○参加者 5 6名

3－1－2 機能性表示食品届出支援

平成 27 年 6 月に設置した新機能性表示食品開発相談センターでは，消費者庁へ の機能性表示食品届出について，届出書類作成等支援業務を 2 社 2 件受託し， 2 件 とも届出中であるとともに，機能性表示食品開発•届出に関する相談業務（令和 2年度相談件数：96件）を行った。

また，令和元年度に届出支援した機能性表示食品については，令和 2 年度に新た に 2 商品（ 2 企業）が発売開始となった。これにより，相談センターが支援した県内企業の機能性表示食品は12商品となった。

【新機能性表示食品開発センターが支援した機能性表示食品（令和2年度）】

商品名	長命草さぬきらどん	讃岐•大麦らどん
事業者名	（株）おおみね	吉原食糧（株）
届出日	令和 2 年 3 月 25 日	令和2年8月5日
機能性関与成分	クロロゲン酸	大麦 β —グルカン
機能性内容	食後血糖値の上昇抑制	食後血糖値の上昇抑制
$\begin{gathered} \text { 商品 } \\ \text { パッケージ } \end{gathered}$		棫谑性表示食品 もちもち （3200］ 2 人用， \qquad

3－2 冷凍食品産業支援事業

冷凍食品に係る県内企業の研究開発や商品開発の取り組みを支援することを目的 として，調査研究，技術相談等の取り組みを実施した。

3－2－1 かがわ冷凍食品研究フォーラム

香川県内に立地している冷凍調理食品製造業及び冷涷水産食品製造業などの冷凍食品を製造する食品企業を対象に，新製品•新技術の開発支援並びに関係企業が抱 える課題を解決するため，産学官が連携して，総合的な支援事業を実施することを目的として，平成 25 年 9 月に「かがわ冷凍食品研究フォーラム」を設立した。令和 2 年度は，かがわ冷凍食品研究フォーラムの事業として，「かがわ機能性食品等開発研究会」と合同でシンポジウムを開催し，県内の冷涷食品を製造する企業等 の研究開発や商品開発の取り組みを支援した。

区分（再掲）	内容等（再掲）
かがわ冷凍食品研究フォー ラム・かがわ機能性食品等開発研究会第8回合同シンポ ジウム	日時 令和 2 年 10 月 22 日（木） $13: 30 \sim 16: 00$ 場所 サンメッセ香川 中会議室 講演 （1）「バリアシュリンクフィルムを用いたガスパック包装に よる食品の消費期限延長と食品ロス削減並びに食品包装用 ラミネートフィルムの動向」

	大倉工業株式会社 合成樹脂事業部商品化グループ 商品開発課長 阪内 邦夫 氏， ラミネート技術課長 筒井 淳浩 氏 （2）「HACCPを活かす考え方とやるべきこと」 公益社団法人 香川県食品衛生協会 専務理事（兼）事務局長 松本 幸三 氏 （3）「食品衛生法改正について—HACCP の制度化，営業許可制度 の見直し，営業届出制度の創設等一」 香川県健康福祉部生活衛生課食品衛生グループ 主任 池田 光広 氏 ○参加者 56 名

4．相談•指導等業務

4－1 技術相談

超臨界流体技術及びマイクロ波技術に関心のある企業等に対し技術相談や企業訪問，現地指導等を実施した。令和 2 年度の実施結果は，次のとおりである。

技術相談			
企業訪問 現地指導			
	電 話	メール	217 件
271 件	119 件	208 件	2

4－2 技術指導実験

企業等からの技術相談に対応して技術指導等を実施しており，その一環で有料実験 （技術指導実験）を行っている。令和 2 年度の実績は，次のとおりである。

\left.| 技術指導実験 | 企業数 | 実施件数 | |
| :---: | :---: | :---: | :---: |
| | 6 県内企業 | 5 ，県外企業 | 1 ） |$\right]$

4－3 研究機器の一般開放

企業等への技術支援の一環として，超臨界流体技術やマイクロ波技術に関する装置，物性測定装置及び分析装置などの研究機器を企業等に開放した。（令和 2 年度利用件数：101件）令和2年度の利用状況については，次のとおりである。

	研究機器名	延利用単位
I－6	高温高圧水熱反応装置	7 時間
I－7	マイクロ波反応装置	18 時間
II－2	高温高圧熱天秤装置	4日
II－7	テクスチャー測定器	10 時間
II－9	蛍光 X 線分析装置（XRF）	2 時間
II－10	粒度分布測定装置	11 時間
II－11	走査電子顕微鏡（SEM）	38 時間
II－12	フーリエ変換赤外分光光度計（FT－IR）	110 時間
II－15	実体顕微鏡	1 時間
II－17	分光光度計（UV－VIS）	7 時間
II－18	色差計	7 時間
II－20	ガスクロマトグラフ質量分析計 GC－MS	4 時間
II－25	カールフィツシャー水分計	3 時間
II－31	送風定温乾燥機	283 時間
II－34	マッフル炉	31 時間
II－35	高温高圧リアクター	273 時間
	実験室	84 半日

4－4 機器利用講習会

地域共同研究部では，技術開発装置や物性測定•分析装置を利用（有料）できるよう に，機器利用講習会を毎年開催している。令和 2 年度は，コロナの影響で中止した。

4－5 研究発表会

R I S T かがわの保有技術である超臨界流体技術及びマイクロ波処理技術等の普及を図るため，県内企業等を対象に技術講演会を開催している。今年度は，超臨界流体技術によるセルロース素材の親油化及びマイクロ波技術の食品等への利用に関する研究員の研究発表会を開催した。

区 分	内 容 等
令和 2 年度研究発表会 （地域共同研究部研究員2名の研究発表）	日時：令和 3 年 3 月 30 日（火） 13 時 30 分～ 14 時 20 分 場所：（公財）かがわ産業支援財団 RIST かがわ 1 階会議室 参加者：20人 演題1「超臨界技術によるプラスチック材料への機能性付与 に関する研究（II）－親油性セルロース素材の開発一」 発表者 地域共同研究部 主席研究員 中西 勉 演題 2 「オリーブ圧搾㳯に含まれるポリフェノールの分析 ーマイクロ波照射によるオリーブ圧搾涬保存前処理 の検討一」 ○発表者 地域共同研究部 主席研究員 朝日 信吉

4－6 「科学と発明」おもしろ体験学習

かがわ産業支援財団（地域共同研究部•RIST かがわ），大西・アオイ記念財団，香川県発明協会の共催により，小学生とその保護者を対象に，科学と発明の面白さを親子等で体験していただくことを目的として，「科学と発明」おもしろ体験学習を開催 した。

区分	内容等
「科学と発明」 おもしろ体験学習	－開催日時：令和 2 年 8 月 2 日（日） $10: 00 \sim 15: 30$ （午前の部 $10: 00 \sim 12: 00$ ，午後の部 $13: 30 \sim 15: 30$ ） 参加者数：親子 23 組 内容 小学生親子を対象に，下記の体験講座を実施した。 ＜かがく実験教室〉 リストかがわ研究施設の実験機器を使い，2班に分かれ交互 に，電子レンジによるガラス細工等の体験及び電子顕微鏡等で微細な世界の観察体験をした。 講師：朝日信吉主席研究員，中西勉主席研究員，補助員 ＜発明工作教室（ドライアイス実験教室）＞ ドライアイスはどのようなものかを実験をとおして学び，工作ではフィルムケースでプチロケットを作り，ドライアイスで発射実験をした。 講師：ELF 丸亀 副理事長 丹下 善弘 先生 ○参加者数：親子 74 名

＜開催風景＞

＜センサーによる検温＞

＜開会式＞

＜発明工作教室（ドライアイス実験教室）＞

4－7 講師•審査員等派遣

県関係及び各種団体が行う審査会•研修講座等の委員会，講師，調査員等として，職員を派遣した。

会 名	主 催	用 務	期 日	派遣先	派遣者
醤油 JAS 格付検査	香川県醤油醸造協同組合	検查員	4月14日 5月12日 6 月 9 日 7月14日 8月11日 9月8日 10月13日 12月8日 3月9日	坂出市	末澤 保彦

醤油 JAS 認証工場 調査（13企業）	一般財団法人日 本醤油技術セン ター	調査員		小豆島町 小豆島町 小豆島町 坂出市 小豆島町 高松市 高松市•他 小豆島町 小豆島町	末澤 保彦
YouTube による企業支援スキルアッ プ研修講師 「競争資金獲得の ための申請書作成 のポイントとプレ ゼンの心得」	一般財団法人四国産業•技術振興センター （四国地域イ ノベーション協議会）	講師	公開時期： 9月1日～ 9月30日		中西 勉
研究テーマ外部評価委員会	香川県環境保健研究センター	委 員	8月 27 日 10 月 22 日	高松市	中西 勉

5．新かがわ中小企業応援ファンド等事業

（新分野等チャレンジ支援事業）

（1）助成対象事業
（1）新分野進出等のための商品•技術の開発
（2）市場性を見極めるための試作品作成
（3）付加価値の高い新製品開発のための実証試験
（4）新事業の可能性評価
（5）技術課題の解決
（2）令和 2 年度前期採択事業（ 7 件）
令和2年度（前期）新分野等チャレンジ支援事業への応募事業者の開拓を行い， 13 社の応募があり，審査の結果 7 社が採択され，事業開始手続，進行状況の確認（中間検査）・フォロー等を実施した。

申 請 者	事 業 名
（株）GRプラント	新ブランドを目指し，「さぬきサフラン」を活用したサフランシロップの製造
（有）筒井製菓	県産豆の粉体加工による新商品開発
（株）長峰製作所	ポータブル脱自機の試作品作製と実証試験
仁尾興産（株）	おからの出ない豆粉豆腐（大豆加工食品：仮称ソイサラダ）の開発
ばいこう堂（株）	高度な発酵技術を利用した新規和三盆糖の開発
（有）宮地醤油醸造場	香川の特産物•県産品を使用した燻製しようゆの開発
（株）モクラス	独自のデザイン・機能等を有する木質製品の開発

＜新分野チャレンジ事業の実施による令和 2 年度発売開始商品＞

株式会社めりけんや

令和元年度事業で実施し，機能性表示食品として販売

さねさえ゙どん
ノオリーブうどん

「食後血糖値が気になる方の
さぬきらどん オリーブうどん」
（届出番号 E691）

「食後血糖値が気になる方の さぬきらどん」（E692）

6．参考資料

6－1 研究成果の事例

6－1－1 主な製品化事例

	【男性向け】藍染め石けん「もののふ」 藍色工房の「藍染め石けん」シリーズ中，最も多 くアイエキスを配合し，汗ばみやすい男性の肌 をスッキリと洗い上げながらも，程よく肌をい たわる石ケンです。（平成 30 年度発売） 【（有）藍色工房】

	○技術指導実験等により，藍生葉中のインジカ ン，トリプタントリン等の機能性成分の最適 量となる条件を指導した。

	蒸らしてデリシャス 破裂を避ける切り目を入れないで，包装状態の ままレンジ調理できる県内メーカーの発泡フィ ルムを利用した泠凍調理食品用機能付スタンド パウチです。 （平成 29 年度発売） 【（株）北四国印刷】
	ORISTかがわの超臨界発泡フィルム調査研究結果や電子顕微鏡による観察などによる技術指導を行った。

	柑橘オリーブオイル 「同時圧搾技術」を用いて，「完熟ネーブル」「レ モン」「ライム」「カラカラオレンジ」「マンダリ ン」の 5 種類の旬の柑橘とオリーブを一緒に控 り，天然果実の香りを閉じ込めています。 （平成 29 年度発売） 【（有）井上誠耕園】
	○受託研究により，原料である柑橘由来のフレ ーバーであるリモネンを高濃度に含有する商品を開発できた。

	生姜（しょうが）オリーブオイル 国産生姜をオリーブオイルと加熱調理すること により，生姜に含まれる成分（ショウガオール） を配合したオリーブオイル （平成 28 年度リニューアル新発売） 【（有）井上誠耕園】
	○含水率を調整したショウガをオリーブオイル とともに加熱調理することにより，さらに生姜 の風味を豊にする新製法を確立した。

$\begin{aligned} & \text { ナチュラル } \\ & \text { シャンプー } \end{aligned}$	$\begin{aligned} & \text { ナチュラルシャンプー } \\ & \text { ナチュラルトリートメント } \end{aligned}$ 伊予相オリーブオイルを配合した「シャンプ －」及び「トリートメント」。 （平成 27 年度発売） 【（有）井上誠耕園】
$\begin{aligned} & \text { ナチュラル } \\ & \text { トリートメント } \end{aligned}$	○柑橘の未成熟果実とオリーブ果実とを同時 に圧搾することにより，柑橘中の有効成分 を含むオリーブオイルの製法を確立した。

	小豆島産緑果オリーブオイル（2014 産） スペイン産の緑果オリーブオイルに加えた小豆島産の緑果オリーブオイル（2014 年度産）。 （平成 26 年度発売） 【（有）井上誠耕園】
	○緑果オリーブオイル及び完熟オリーブオイ ルの総ポリフェノールの比較分析等の支援 を実施した。

ドライフルーツ・ドラ嘢菜 精油 （エッセンシャルイイル）	精油（エッセンシャルオイル）及び ドライフルーツ・ドライ野菜及びパウダー （平成 25 年度発売） 【NP0 法人明日に架ける橋（株さあかす）】
ドラ嘢菜•果実のパウダー	○マイクロ波減圧乾燥装機による農産物加工処理を実施し，精油（エッセンシャルイイル）の製造，野菜•果実のマイクロ波乾燥を支援し た。 精油，蒸留水，乾燥物等の機能性成分等の分析を実施した。

	お顔の美容クリーム 伊予相オリーブオイルを配合して「お顔の美容 クリーム」。（平成 24 年度発売） 【（有）井上誠耕園】
	○柑橘の未成熟果実とオリーブ果実とを同時に圧搾することにより，柑橘中の有効成分を含 むオリーブオイルの製法を確立した

	伊予柑オリーブオイルを配合した マッサージクレンジングオイル 伊予柑オリーブオイルを配合したマッサージ クレンジングオイルを。（平成 23 年度発売） 【（有）井上誠耕園】
$\begin{aligned} & 40 \\ & \ldots \\ & \hline \end{aligned}$	○柑橘の未成熟果実とオリーブ果実とを同時 に圧搾することにより，柑橘中の有効成分 を含むオリーブオイルの製法を確立した。

| 伊予柑オリーブオイル |
| :--- | :--- | :--- |
| |

6－1－2 プロセス開発事例

	「マイクロ波—固体触媒」を用いた廃食用油のBDF 化技術
未反応 \qquad メタノール BDF \longrightarrow マイクロ波—固体触媒法を用いて植物油 から得られたバ休ディーゼル燃料（BDF）	○マイクロ波一固体触媒法を用いたトリグリ セリドのエステル交換によるBDFを合成 する技術。 ○装置の小型化，工程の簡略化，廃アルカリ・廃水処理費用が不要となるなど，低コスト でBDFの製造が可能。 J S T の平成 19 年度地開発可能性調査研究，平成 20 年度シーズ発掘試験等で実施し た。

	柑橘成分入りオリーブオイル
	オリーブと柑橘を別々に圧搾して混合した オイルよりも柑橘由来の有効成分が多く含 まれている。 食品はもちろんのこと化粧品としても製品化が可能。 ○開発可能性調査研究，受託研究で実施した。

	亜臨界あるいは超臨界流体噴射用ノズル (クリアランスノズル)
クリアランスノズル	超臨界急速膨張法に用いるノズルで，通常 のノズル穴にニードルを貫通させ，その空隙より噴射するもの。 ○断面積が大きく大量の微粒子製造に適する他，目詰まりにも強いという特徴がある。 ○新分野展開技術研究開発事業（16 年度県補助事業）で開発し，JST の産学共同シーズイノべ ーション化事業顕在化ステージ で試作機を開発し た。

	超臨界パターニング技術による微小電極及び微小電池の創製
	○超臨界C02パターニング（SCAP）技術によ り，数十 $\mu \mathrm{m}$ の微細構造や $100 \mu \mathrm{~m}$ 程度の微小 Li 二次電池の形成が可能になる。 J S T の平成 18 年度シーズ発掘試験での成果である。

高品位ナノポア炭素材料の新しい製造技術

○電気二重層キャパシタや燃料電池の電極とし て利用可能な，高比表面積•高密度の高純度多孔質炭素材料のマイクロ波加熱法による新 しい製造技術である。
○表面積が $3500 \mathrm{~m}^{2} / \mathrm{g}$ 以上，最分布孔径が 2 nm ，灰分率が 0.3% 以下で，市販高品位活性炭 よりも高い静電容量及び充放電安定性を持っ ている。

	O県内の共同研究企業が事業化装置の $1 / 10$ 規 模の実証試験装置を導入し，高品位活性炭を 製造中です。18年度には JST の独創的シーズ 展開事業に採択され，実用化装置を開発した。

	高表面積ナノ白金担持活性炭の製造技術
\square	○固体高分子形燃料電池の実用化のために必須の，高性能触媒である白金活性炭複合材料の製造技術である。 ○比表面積 $2000 \mathrm{~m}_{2} / \mathrm{g}$ 以上，粒径 5 nm 以下の白金を 10% 担持した活性炭の調製が目標。 ○超臨界二酸化炭素吸着法及びマイクロ波焼成法を用いて，白金化合物利用率 97% 以上 で， 5 nm 以下の白金粒子を均一に担持し，目標とした活性炭複合体が生成した。

	急速膨張法による材料創製技術
酸化チタ	○超臨界二酸化炭素中に溶解させた金属アル コキシドを急速膨張法で噴霧させることに より， （1）均一微粒子の創製 （2）メッシュへのコーティング （3）均一な薄膜，厚膜の創製 などを行ら技術である。 「均一微粒子の創製技術」は，$\mu \mathrm{m}$ オーダー の均一サイズの球状微粒子を創製すること が可能。 「メッシュへのコーティング技術」は，複雑な形状基盤へのコーティングが可能で，新規触媒などの創製に活用できる。 「均一な薄膜，厚膜の創製技術」は，有害な有機溶媒を用いることなく，強固で均一な厚みを持つ薄膜や厚膜の創製に活用でき る。

	O上記技術の一部は，新エネルギー・産業技 術総合開発機構プロジェクト「超臨界流体 利用環境負荷低減技術研究開発（平成12 年度～144年度参加）」での研究成果であ る。

	超臨界急速膨張法による 徴細パターニングーニング技術 ○超臨界二酸化炭素中に分散させた金属微粒子のマスクをとおして基板上に噴射し，パ ターニングを行う技術である。 ○粒子の凝縮のない状態で均一コーティング ができるため，直径 $50 \mu \mathrm{~m}$ のはんだバンプ や線幅 $30 \mu \mathrm{~m}$ のパターニングが可能であ る。 ○二酸化炭素に不溶な微粒子によるパターニ ングが可能であり，プリント基板への配線 のほか，スクリーン印刷の代替技術や水素 ガスセンサー，導電材，圧電体，光触媒等 への応用が可能である。 ○県内企業と共同開発した成果である。
	電磁波吸収炭素繊維の製造技術 ○マイクロ波一水熱法により，炭素繊維上に フェライト（金属酸化物）を迅速にコーテ イングする技術である。 ○これまで未開発であった広帯域（ 30 MHz ～ 60 GHz ）の電磁波を遮断する効果のある電磁波吸収材であり，建築建材や電子機器等の幅広い分野での利用が可能である。 ○地域コンソーシアム研究開発事業（平成 13年度終了）での産学官の共同研究の成果で ある。

	廃ポリウレタンの分解•原料回収技術
PUR 分解生成物	○超臨界流体等を用いて廃ポリウレタンを分解し，原料として回収する技術である。 ○従来法に比べて，低温で高い分解率（ 90% 以上）を達成した。 ○原料であるポリオールとジイソシアネート のブロック化物（原料のジイソシアネート は，反応性が高く常温での保存が困難）とし て回収します。ブロック化物は容易に熱分解して原料への回収が可能である。

6－1－3 新素材の開発事例

	リチウムイオン電池用固体電解質
ポリマー電解質	○小型化された電気製品に大量の需要が見込 まれるリチウムイオン電池用のポリマー （固体）電解質（現状：ゲル状電解質）を製造 する技術である。 県外企業との共同研究及び課題対応新技術研究開発事業により，実用化レベルの充放電特性を有する素材を開発した。

		リチウムイオン電池用正極材料
蜲梘ナノサイスー酳化 マンが電池材料内苞： 11 E䵮サイス： 30 nm	従来のニ瞿化マンガン 電池材料 内察畵：18 結晶サイス： $10 \mu \mathrm{~m}$	○有害性の高い希少金属であるコバルトの代替材料として，資源的に豊富で安全性の高いマ ンガンを使用して正極材料を製造する技術で す。 ○結晶サイズが 30 nm （従来の電池材料の約 300分の1）で，充放電ロスが少ない単結晶微粒子 の正極材料である。 ○この正極とポリマー電解質とを一体化した高性能の電池を作製することが最終目標。

6－1－4 装置の開発事例

	超臨界流体抽出装置
	○超臨界二酸化炭素を用いて，薬用成分や香 り成分の抽出，不純物の除去等を行う装置 である。 ○温度，圧力を任意に制御することが可能で，最適抽出条件を効率的に決定することが可能である。 ○県内企業との共同研究により平成 12 年に開発したものである。

6－2 共同研究•受託研究等制度の概要

地域共同研究部の前身である高温高圧流体技術研究所は，平成 7 年に岡山県，香川県，徳島県（平成 9 年 3 月に高知県参加）が共同で「東中•四国創造的経済発展基盤地域（STZ）」整備方針を策定し，その中で，産学官の研究開発を牽引する「広域的研究開発基盤施設」として設置された研究所である。

地域企業の技術革新や新規産業の創出を行うため，平成8年度から高温高圧流体技術，マイクロ波応用技術等を使用した研究開発を開始してきた。現在，「共同開発研究型プロジェクト」，「地域企業共同研究支援事業」のほか「開発可能性調査研究（F S ）型プロジェクト」，「受託研究」，「技術相談」，「研究機器一般開放」などの制度を整備 している。

6－2－1 共同開発研究型プロジェクト

産学官が共同で実施する開発研究プロジェクトであり，原則的に地域共同研究部 （RIST かがわ）の設備を優先的に使用することができる。
（1）共同開発研究

区分	内容
研究期間	$1 \sim 3$ 年程度
参加企業負担金 （消費税別）	運 営 県内企業：1 0 0 万円以上／年 $^{\text {a }}$
	管理 費 STZ地域企業及び県外中小企業：500 万円以上／ 年
	その他企業：600万円以上／年
研究指導者	研究指導者の選任は地域共同研究部と企業が協議して決定す る。
研究員	地域共同研究部の研究員（博士の学位を有するか又はそれと同等の学歴経験を有するもの）1名以上を当該プロジェクト の担当者とする。 企業からは研究者又は製品開発担当者 1 名以上を配置する。 （常駐を必要としない。） なお，研究指導者の判断によって適宜客員研究員を委嘱する。
研究ブース及び実験機器の使用	基礎研究等のため，研究管理棟の実験室•研究室及び実験機器並びに実験棟のテストプラントを使用できる。
その他	研究開発に必要なテストプラントの改良•修繕費は，参加企業 の負担とする。

注1：S T Z 地域企業とは，岡山県，徳島県，高知県に立地する企業をいう。
注2：その他企業とは，中小企業基本法に定める企業を除く企業をいう。
（2）地域企業共同研究支援事業による共同開発研究

区分	内容
対象	香川県内の企業
研究期間	1年以内（さらに1年以内の延長可）
参加企業負担金 （消費税別）	300 万円／年以内 （同額を財団が負担）
研究指導者	研究指導者の選任は地域共同研究部と企業が協議して決定す る。
研究員	地域共同研究部の研究員（博士の学位を有するか又はそれと同等の学歴経験を有するもの）1 名以上を当該プロジェクト の担当者とする。 企業からは研究者又は製品開発担当者 1 名以上を配置する。 （常駐を必要としない。） なお，研究指導者の判断によって適宜客員研究員を委嘱する。
研究ブース及び 実験機器の使用	基礎研究等のため，研究管理棟の実験室•研究室及び実験機器並びに実験棟のテストプラントを使用できる。

6－2－2 開発可能性調査研究（F S ）型プロジェクト

企業等が新たな開発研究を実施する前に，その可能性を調査するためのプロジェ クトである。
（1）FS I
［研究•実験機器等を月5日以内で使用することを前提とした調査研究］

区分	内容
研究期間	月5日以内，年間60日以内する。
参加企業負担金 （消費税別）	基本料＋技術指導費
	基本料 500 万円
	技術指導費 特別な技術指導を行った場合に必要な経費
研究指導	研究員は配置しないが，1時間／日以内の技術指導及び相談に応じる。
実験機器の使用	研究•実験設備等の使用については，当地域共同研究部の使用状況を考慮して調整する。
その他	（1）基本料には，機器の使用，使用機器の操作指導及び 1 時間／日程度の技術指導•技術相談を含む。 （2）消耗品費，原材料費は参加企業の負担とする。

（2）FS II
［研究•実験機器等を最大 1 年間使用することを前提とした調査研究］

区分	内容	
研究期間	1 年以内とする。	
参加企業負担金 （消費税別） 基本料＋技術指導費		
	基本料	250 万円
	技術指導費	特別な技術指導を行った場合に必要な経費
研究指導	研究員は配置しないが， 1 時間／日以内の技術指導及び相談に 応じる。 実験機器の使用 そ S I に同じ。 その他 F S I に同じ。	

6－2－3 受託研究

企業等の創造的事業活動及び技術革新を支援するため，企業からの委託による開発研究を実施する。
（1）研究対象
高温高圧流体技術及びマイクロ波技術並びにこれらに関連する技術を用いた研究 で，主な研究分野は「環境関連分野」，「新素材関連分野」，「エネルギー・資源分野」，
「医薬•食品関連分野」とする。
（2）受託研究費
「基本単価」，「試験材料費」，「装置運転経費（開放機器等の使用料を準用）」及び

「間接経費（試験材料費，装置運転経費の 8 \％）」の合計額（消費税別）とする。 なお，基本単価は次のとおり。

区分	基本単価（円／時間）
県内企業	$4, \quad 300$
S T Z 地域企業及び県外中小企業	$6, ~ 450$
その他企業	$8, \quad 600$

6－2－4 技術相談•技術指導

高温高圧流体技術及びマイクロ波技術に関心のある企業等に対し，技術力の向上 や当地域共同研究部との共同研究に向けた支援を行うため，技術相談を実施してい る。
（1）技術相談
技術相談は原則無料とし，必要に応じて技術指導を行う。
（2）技術指導の実施期間
技術指導の実施期間は原則1ヶ月以内とし，技術指導に伴う実験（いわゆる「アタリ実験」）を実施する。
（3）相談結果の活用
相談結果の活用については，共同開発研究型プロジェクト・開発可能性調査研究型プロジェクト等への展開を含め，双方が別途協議する。
（4）技術指導費
アタリ実験に要する経費（基本料＋試験材料費•燃料費）は申込者の負担と する。

基本料は， 1 試料につき県内企業が 2 万円（ただし，中小企業は 1 万円）， S T Z 地域企業及び県外中小企業が 3 万円，その他企業が 5 万円とする。（消費税別）

6－2－5 機器開放

企業等への技術支援の一環として，研究機器を一般開放している。
（1）対象機器
当地域共同研究部の分析機器，測定装置，実験装置
（2）使用日時
原則として，土•日•祝日を除く週日の午前 9 時から午後 5 時まで
（3）操作方法の指導
必要に応じて担当者が指導する。（有料）
（4）使用料金（次頁の開放機器使用料等一覧表のとおり）

県外企業については，次表の割合を使用料金に乗じる。

区	分
STZ 地域企業及び合（\％）	
その外中小企業	150
そ仆企業	200

STZ 地域企業とは，岡山県，徳島県，高知県に立地する企業をいい，その他県外企業と は，中小企業基本法に定める企業を除く企業をいう。

II．物性測定装置，分析装置等（消費税別）

番	機	名	用 途	使用 単位	使用料金	延長使用料金
						（延長1時間につき）
1	高温高圧熱量計		有機物質のガラス転移点，結晶化温度，融点 の精密測定	1 日	27， 000 円	3， 400 円

2	高温高圧熱天秤装置	試料の重量変化（吸脱着）等の計測	1 日	23， 000 円	2，900円
3	卓上引張試験機 （ 1 k N ）	材料強度等の物性の計測	1 時間	400 円	－
4	微小硬度計	新素材等の微小固体の硬度測定	1 時間	500 円	－
5	耐摩耗性試験機	材料表面の摩耗性•摺動性の評価	1 時間	400 円	－
6	接触角測定器	材料表面の撥水性•撥油性の評価	1 時間	100 円	－
7	テクスチャー測定器	食品のテクスチャーの評価	1 時間	200 円	－
8	X 線回折装置	試料の結晶構造の分析 や定性分析	1 時間	5，200円	－
9	蛍光 X 線分析装置	金属元素の非破壊測定	1 時間	600 円	－
10	粒度分布測定装置	微細粒子の粒度分布計測	1 時間	1，500円	－
11	走査電子顕微鏡 （SEM）	試料の表面形状や組成分析	1 時間	2， 500 円	－
12	フーリエ変換赤外分 光光度計（FT－IR）	有機•無機物質の測定	1 時間	1， 000 円	－
13	F Tラマン・赤外分光測定装置	合成有機素材の構造解析	1 時間	2， 200 円	－
14	システム金属顕微鏡	新素材の物性測定，材質変化の測定	1 時間	500 円	－
15	実体顕微鏡	微細物質の拡大観察	1 時間	100 円	－
16	高周波誘導結合プラ ズマ発光分光分析計 （ICP）	各種元素の精密測定	1 時間	2，900円	－
17	分光光度計（UV－vis）	各種化合物の精密測定	1 時間	200 円	－
18	色差計	色の測定	1 時間	200 円	－
19	$\begin{aligned} & \text { マイクロプレートリ } \\ & \text { ーダー } \end{aligned}$	食品素材等の酵素阻害活性•抗酸化性・ポリ フェノール含有量の測定	1 時間	500 円	－
20	ガスクロマトグラフ 質量分析計（GC－MS）	有機化合物の定性•定量分析	1 時間	1，800 円	－

21	ガスクロマトグラフ （GC）	各種化合物の精密測定	1 時間	400 円	－
22	高速液体クロマト グラフ	各種化合物の精密測定	1 時間	1，100円	－
23	高速液体クロマト グラフ (ELSD)	食品等成分の定性，定量	1 時間	1，500円	－
24	全有機体炭素計 (T O C)	有機炭素量の測定	1 時間	700 円	－
25	カールフィッシャー 水分計	液体•固体中の微量水分量の測定	1 時間	300 円	－
26	真空式グローブボッ クス	空気や水分等を遮断し た環境における試料の前処理	1 時間	1， 800 円	－
27	クリーンベンチ	クリーン環境での試料調製や部品組立	1 時間	100 円	－
28	マイクロ波減圧乾燥装置	素材のマイクロ波乾燥処理	1 時間	100 円	－
29	熱風併用型マイクロ波乾燥装置	素材のマイクロ波乾燥処理	1 時間	900 円	－
30	凍結乾燥機	試料中の水分除去・フ リーズドライ	1 時間	400 円	－
31	送風定温乾燥機	試料中の水分除去•高温乾燥	1 時間	200 円	－
32	防爆型乾燥機	有機溶剤•化学薬品等試料の乾燥	1 日	2， 000 円	－
33	恒温器	恒温•恒湿環境におけ る試料の保存	1 日	800 円	－
34	マッフル炉	試料の灰化•焼結処理	1 時間	100 円	－
35	高温高圧リアクター	高温高圧下での抽出注入実験	1 時間	500 円	－
36	耐蝕型超臨界反応試験装置	酸性雰囲気下の高温高圧流体反応	1 時間	900 円	－
37	遠心分離機	試料の固液分離•油水分離	1 時間	100 円	－
38	冷却遠心分離機	低温条件での試料の固液分離•油水分離	1 時間	500 円	－
39	$\begin{gathered} \text { フリーザー } \\ \left(-40^{\circ} \mathrm{C}\right) \end{gathered}$	試料の冷凍保存	1 日	500 円	－

40	冷凍冷蔵庫	試料の冷凍•冷蔵保存	1 日	800 円	-
41	蛍光式光ファイバ 温度計	材料表面•内部等の温 度計測	1 時間	100 円	-
$※$	実験室	試作•加工等	半日	1,000 円	-

県外企業については，次表の割合を使用料金に乗じる。

区	分
STZ 割合（\％）域企業及び県外中小企業	150
その他県外企業	200

STZ 地域企業とは，岡山県，徳島県，高知県に立地する企業をいい，その他県外企業と は，中小企業基本法に定める企業を除く企業をいう。

III．機器操作指導
（消費税別）

項 目 名	内	単位	手数料
機器操作指導料	機器使用者に操作指導を行う	1 時間	4,000 円

研究報告

超臨界技術によるプラスチック材料への機能性付与に関する研究（II）

－親油性セルロース素材の開発－

中西 勉

Abstract

プラスチックフィルム～機能を付与するための副資村の開発を目指し，親油性のセルロース素材の開発を行った。反応条件に伴うアセチル化度（DS値）の変化を指標にして，無水酢酸に よるセルロース素材のアセチル化条件を検討した結果，超臨界 CO_{2} の存在によって無水酢酸 を削減することができた。温度 $160^{\circ} \mathrm{C}$ ，圧力 20 MPa において超臨界 CO_{2} の存在下で，セルロー ス素材 (g) と無水酩酸 (mL) の混合比 $=2.8 \mathrm{~g} / 28 \mathrm{~mL}$（反応槽容量 180 mL ）で 2 h 反応させた結果，目標とするアセチル化度（DS 値う1）のセルロース粉末を得ることができた。無水酢酸の使用量が 14 mL 以上の条件では超臨界 CO_{2} の存在下でアセチル化の促進効果が認められ，無水酢酸の使用量削減が可能であった。 Lかし，DS 值の高いサンプルほど茶褐色に呈色し，原料との色差が大きくなった。

1 緒言

香川県には国内で唯一の超臨界発泡フィルム製造企業がある。本フィルムは軽量で優れた断熱性を特徴として商品化されているが，さらなる高強度化や，環境負荷低減化のためのプラスチックの使用量削減に関する開発が求められている。そこで，プラスチックに補強材としてセルロースナノファイバー （CNF）を添加して強度を高めて薄膜化することによるプラスチックの使用量削減が試みられているが， プラスチックと CNF との親和性が弱くプラスチックへの CNF の均一混合と分散が困難となっている。
その解決のため，CNFの表面を親油性に改質してプラスチックと親和性を高めることが必要となる。親油性 CNF の製造技術としては，TEMPO（2，2，6，6－tetramethylpiperidine－1－oxyl radical）を触媒にしてセ ルロース骨格のC6位の1級ヒドロキシ基を選択的にカルボキシル基に変換する方法 ${ }^{1)}$ ，天然セルロー ス繊維を懸濁した水を相対する二つのチャンバーから高圧で噴出して衝突させる水中カウンターコリジ ヨン法（ACC 法 $)^{2)}$ ，湿式ディスクミルによって竹繊維を機械的に解砕した後にアセチル化あるいはオクタ ノイル化する方法 ${ }^{3}$ など，多くの技術が開発されている。これらの方法では，親油化 CNF は反応溶媒中 に分散された状態で得られるため，プラスチック等の補強材として使用するためにCNF 素材の形状を保持した状態で反応溶媒を除去することが必要である。しかし，反応溶媒の除去は困難であり，コストが高 くなる。
令和2年度には，親油化されたセルロース素材と反応溶媒との分離が容易な技術の開発を目的とし て，原料としてセルロース製ろ紙を用い，温度 $120^{\circ} \mathrm{C}$ ，反応時間 2 h で，無水酢酸に硫酸を $0.001 \sim 0.01 \%$添加した反応溶媒中でアセチル化反応させた後に，ろ紙を取り出して粉砕することによる親油化セルロ ース素材の作成を試みた。そして，反応後のろ紙の親油性は，水滴を落下して接触角を観察することに よって確認した ${ }^{4}$ 。しかし，本方法でもアセチル化反応は液相中で実施しており，反応溶媒としての無水酢酸を大量に用いることから，環境負荷を低減化するためにも無水酢酸の使用量を削減することが課題であった。

そこで本研究では，反応溶媒である無水酢酸を削減することを目的に超臨界 CO_{2} 存在下でのアセチ ル化の条件を検討した。アセチル化は，プラスチックに混合するための補強材としてセルロース素材の結晶性や形状を維持する観点 ${ }^{5}$ から DS 値を 1 程度とした。また，アセチル基の確認のため，FT－IRを用いてアセチル基由来の $\mathrm{C}=\mathrm{O}$ の吸収も測定した。

2 実験

2－1 試料

セルロース素材として結晶性セルロース粉末（（株）伏見製薬所製の Comprecel S101型 以後，セル ロース粉末），反応溶媒として無水酢酸（富士フィルム和光純薬（株）製特級，純度 99.9% ）と CO_{2}（中四国エア・ウォータ（株）製高純度，純度 99.9% ），触媒としてピリジン（富士フィルム和光純薬（株）製特級，純度 99．5\％）を用いた。

2－2 実験装置

実験装置の概略を図1に示した。反応槽は，容積 180 mL ，材質はハステロイで ある．試料 2.8 g を不織布袋に封入して反応槽上部に吊下げ，表1に示した無水酢酸，ピリジン， CO_{2} の所定量を反応槽に投入し，バンド型の電熱ヒータを用いて昇温 した。 CO_{2} を添加する場合は全て 20 MPa の圧力で行った。所定条件下で反応させ た後，装置全体を冷却して試料を取り出

図1 実験装置

2－3 分析方法

アセチル化由来の C＝O の吸収（ $1,750 \mathrm{~cm}^{-1}$ ）を示すピークの面積は，FT－IR（ニコレー製 670 型）を用 いて得られたスペクトルデータから求めた。アセチル化度（DS 値）は，本研究で用いたセルロース素材 の分子骨格をグルコース（モル分子量 162）と仮定してAndo らの方法 ${ }^{6}$ に準じて中和滴定法で求めた。試料の色は，分光色彩計（日本電色工業（株）製 SD7000 型）を用いて $\Delta \mathrm{E}^{*} \mathrm{ab}$ を求めた。 $\Delta \mathrm{E}^{*} \mathrm{ab}$ は， JIS 規格（JIS Z 8781－4）で定められている色空間（L＊：明度，a＊：赤～緑，b＊：黄～青）における二つの座標（原料の座標，処理物の座標）の色の差を数値化したものであり，値が大きいほど差が大きい，試料の形状は，走査型電子顕微鏡（（株）日立ハイテクサイエンス製 SU3500 型）を用いて撮影した。

3 結果

3－1 DS 値，FT－IR ピーク面積，色差（ $\Delta \mathrm{E}^{*} \mathrm{ab}$ ）の関係

測定結果（DS 値，FT－IR ピーク面積，ΔE^{*} ab）を実験条件とあわせて表1に示した．また，FT－IRを用いて，アセチル基由来の $\mathrm{C}=\mathrm{O}$ の吸収ピークを測定した結果， $1,750 \mathrm{~cm}^{-1}$ の波長においてピークを検出できた。 FT－IR 測定結果の一例を図 2 に示した。

表1 実験条件並びに測定結果（DS 値，FT－IR ピーク面積，$\Delta \mathrm{E}^{*} \mathrm{ab}$ ）

温度 ${ }^{\circ} \mathrm{C}$ C $)$	反応時間（h）	原料（g）	無水酢酸（mL）	ピリジン	CO_{2}	DS 値	ピーク面積	$\Delta \mathrm{E}^{*} \mathrm{ab}$
-	-	-	-	-	-	0.08	0.00	-
120	2	2.8	140	無	無	0.21	0.79	0.80
120	4	2.8	140	無	無	0.27	1.11	1.40
120	6	2.8	140	無	無	0.24	1.25	0.90
120	2	2.8	140	0.01%	無	0.55	7.34	1.67
120	2	2.8	140	0.1%	無	0.62	7.45	2.23
120	2	2.8	28	無	無	0.49	5.58	1.99
120	2	2.8	28	無	20 MPa	0.56	7.53	2.69
120	2	2.8	28	0.1%	無	0.62	5.71	1.18
120	2	2.8	28	0.1%	20 MPa	0.64	8.24	2.85
120	2	2.8	7	無	無	0.53	7.05	2.66
120	2	2.8	7	無	20 MPa	0.55	6.05	1.84
140	2	2.8	140	無	無	0.22	1.97	1.71
160	2	2.8	140	無	無	0.33	2.41	6.12
160	2	2.8	56	無	無	0.62	6.30	2.00
160	2	2.8	56	無	20 MPa	0.71	10.22	5.01
160	2	2.8	28	無	無	0.79	8.01	2.97
160	2	2.8	28	無	20 MPa	0.93	15.90	10.68
160	2	2.8	28	0.1%	無	0.58	6.13	2.37
160	2	2.8	28	0.1%	20 MPa	0.78	11.78	6.71
160	2	2.8	14	無	無	0.48	6.21	1.29
160	2	2.8	14	無	20 MPa	0.86	9.02	2.90
160	2	2.8	7	無	無	0.57	5.49	3.04
160	2	2.8	7	無	20 MPa	0.54	7.78	4.26

図2 FT－IRスペクトル

DS値とFT－IRピーク面積との相関性を図3に，DS値と $\Delta E^{*} a b$ との相関性を図 4 に示した。DS値は， FT－IR ピーク面積，および $\Delta \mathrm{E}^{*}$ ab の増加に伴って高くなる傾向を示した。また，DS 値と FT－IRピーク面積との相関性は，DS 値と $\Delta E^{*} a b$ との相関性よりも強い結果となった。

図3 DS 値と FT－IR ピーク面積の相関性

図4 DS 値と $\Delta \mathrm{E}^{*} \mathrm{ab}$ の相関性

3－2 反応条件による DS 値の変化

（1）液相反応における実験条件の影響

液相反応におけるDS 値に及ぼす実験条件の影響を図5に示した。

反応温度の影響（図5a）

反応時間 2 h ，無水酢酸添加量 140 mL の条件下で，温度が $120^{\circ} \mathrm{C}$ ， $140^{\circ} \mathrm{C}$ ，および $160^{\circ} \mathrm{C}$ の DS 値を比較し た。温度の上昇とともに DS 値は増加 する傾向を示したが， $160^{\circ} \mathrm{C}$ の条件で も DS 値はあまり増加しなかった。

反応時間の影響（図5b）

温度 $120^{\circ} \mathrm{C}$ ，無水酢酸添加量 140 mL の条件下で，反応時間が $2 h, 4 h$ ，お よび 6 h の DS 値を比較した。反応時間の増加によってDS値は増加しなか った。この結果から，反応時間を延長 しても DS 値は増加しないことが推察 された。

ピリジン添加の影響

反応温度 $120^{\circ} \mathrm{C}$ ，反応時間 2 h のと きのピリジンの添加効果を調い゙た結果，ピリジンを 0.01% 添加した場合に DS 値が無添加のときの 2.6 倍に上昇 したが， 10 倍量の 0.1% 添加しても DS値のさらなる上昇は認められなかっ

図5 液相反応におけるDS 値に及ぼす実験条件の影響

 た。このことから，ピリジンを 0.1% 以上添加してもDS 値は顕著に上昇しないことが推察された。
（2）気相反応における実験条件の影響

気相反応における DS 値に及ぼす実験条件の影響を図6に示した。

無水酢酸添加量の影響

無水酢酸の添加量が 140 mL の場合が液相反応であり，それ以下の添加量が気相反応である。図 6 の結果から，ピリジン無添加の条件では，気相反応で得たサンプルのDS 値が液相反応の場合よりも高 い傾向を示した。また， $160^{\circ} \mathrm{C}$ の条件下では，無水酢酸添加量が 28 mL の場合の DS 値が最も高い結果 であった。

ピリジン添加の影響

無水酢酸の添加量が 28 mL の条件において，触媒としてピリジンを添加した。反応温度が $120^{\circ} \mathrm{C}$ のと きはピリジンを添加したときの DS 値が無添加の場合より大きく， $160^{\circ} \mathrm{C}$ のときはピリジンを添加したときの DS 値が無添加の場合より小さかった。

両温度条件はピリジンの沸点の $110^{\circ} \mathrm{C}$ を超えているため，両温度条件においてピリジンは同じ蒸気密度で存在していると考えられる。しかし，無水酢酸の沸点 $\left(140^{\circ} \mathrm{C}\right)$ 以下の $120^{\circ} \mathrm{C}$ の場合にはセルロー ス粉末周囲の無水酢酸の蒸気密度が低く，沸点以上の $160^{\circ} \mathrm{C}$ の場合にはセルロース粉末周囲の無水酢酸の蒸気密度が高くなり，その結果，無水酢酸の蒸気密度の影響がピリジンの添加による影響よりも大きくなったためと考えられた。なお， $160^{\circ} \mathrm{C}$ の場合にピリジンを添加することによって DS 値が低下した のは，この条件でピリジンの分圧が高くなり，相対的に無水酢酸の分圧が低くなったためと考えられる。

$\left(120^{\circ} \mathrm{C}\right.$ ，反応時間 2 h ）

$\left(160^{\circ} \mathrm{C}\right.$ ，反応時間 2 h ）

図6 気相反応におけるDS 値に及ぼす実験条件の影響

超臨界 CO_{2} 添加による影響

無水酢酸添加量，温度，反応時間，および触媒添加量が同じ条件下で，超臨界 CO_{2} を添加した場合の DS 値の変化を図7に示した。

無水酢酸の添加量が 7 mL では，超臨界 CO_{2} の添加による効果は認められなかった。当該条件下で は反応槽内における無水酢酸の蒸気密度が小さく，超臨界 CO_{2} の優れた浸透作用に伴ら効果が得ら れなかったためと考えられた。

無水酢酸の添加量が 14 mL 以上では，超臨界 CO_{2} の添加によって DS 値は増加した。この条件下で は，表面張力がほとんどなく微細な空隙内への浸透効果が高い超臨界 CO_{2} とともに移動した無水酢酸 がセルロース粉末と十分に接触して反応の効率が高まったためと考えられた。

図7 超臨界 CO_{2} の添加による DS 値の変化

（3）セルロース粉末の色彩と形状に及ぼすアセチル化反応の影響

セルロース粉末の色彩と形状に及ぼすアセチル化反応の影響について調べた。

反応後のセルロース粉末の色の変化

反応後のセルロース粉末の色の変化を図 8 に示した。また，同一条件下で色差におよぼす温度の影響を表2にまとめた。色の変化は，原料と処理サンプルの色差である $\Delta E^{*} a b$ を用いた。

実験結果から，反応温度が高いほど，$\Delta E^{*} a b$ は大きくなり，色相については茶褐色を呈した。茶褐色を呈したのは，本実験条件においてセルロース分子中のグルコースが熱によってカラメル化して着色 したことが原因の一つとして考えられる。また，同一条件で超臨界 CO_{2} の添加による影響を調べた結果，無水酢酸の蒸気が少ない条件（ $120^{\circ} \mathrm{C}$ ，無水酢酸添加量 7 mL ）以外では，全てにおいて超臨界 CO_{2} の添加によってセルロース粉末は茶褐色を呈した。

図8 反応後のセルロース粉末の色の変化

表2 色差（ $\left.\Delta \mathrm{E}^{*} \mathrm{ab}\right)$ におよぼす温度の影響

$\Delta \mathrm{E}^{*} \mathrm{ab}$			
$120^{\circ} \mathrm{C}$	$160^{\circ} \mathrm{C}$	他の条件	
0.80	6.12	無水酢酸 140 mL ，触媒無， CO_{2} 無	
1.99	2.97	無水酢酸 28 mL ，触媒無， CO_{2} 無	
2.69	10.68	無水酢酸 28 mL ，触媒無， $\mathrm{CO}_{2} 20 \mathrm{MPa}$	
1.18	2.37	無水酢酸 28 mL ，触媒ピリジン0．1\％， CO_{2} 無	
2.85	6.71	無水酢酸 28 mL ，触媒ピリジン0．1\％， $\mathrm{CO}_{2} 20 \mathrm{MPa}$	
2.66	3.04	無水酢酸 7 mL ，触媒無， CO_{2} 無	
1.84	4.26	無水酢酸 7 mL ，触媒無， $\mathrm{CO}_{2} 20 \mathrm{MPa}$	

本研究における反応条件下で得られた DS 値が高いサンプルと，原料の形状を比較した（図9）。素材表面と大きさにおいて，両者の差はほとんどなかった。このことから原料の形状を保持した状態でアセ チル化が可能であると考えられた。

図 9 反応前後のセルロース粉末の形状比較

4 まとめと今後の予定

セルロース素材のアセチル化を FT－IR による測定，および DS 値の測定により確認できた．FT－IR に よる検出ピーク面積と DS 値との相関性は高かった。また，セルロース素材（ g ）と無水酢酸（ mL ）の混合比 $=2.8 \mathrm{~g} / 28 \mathrm{~mL}$（反応槽容量 180 mL ），反応温度 $160^{\circ} \mathrm{C}$ ，反応時間 2 h ，圧力 20 MPa の超臨界 CO_{2} の存在下において，目標とするアセチル化度（DS 値う1）のセルロース粉末を得ることができた。無水酢酸 の使用量が 14 mL 以上の条件では，超臨界 CO_{2} の添加によってアセチル化の促進効果が認められ，無水酢酸の使用量削減が可能であった。一方で，本実験条件でアセチル化したセルロース粉末は茶褐色を呈する傾向が認められた。目的とする DS 値のセルロース素材を得ることができたが，プラスチック に複合化しフィルム化した際に，呈色の面で商品の品質に影響を及ぼす可能性も考えられ，課題として残った。

今後は，反応前後の原料の変化を最小限度に抑えたうえで，アセチル化により親油化したセルロー ス素材の複合化によるプラスチックの高強度化を目的として，セルロース素材とプラスチックとの均一な複合化条件，アセチル化の有無によるプラスチックの強度の差等について検討する予定である。

謝辞

本研究に係るセルロース素材のアセチル化と評価方法等に関してご指導下さりました，国立研究開発法人産業技術総合研究所中国センター機能化学研究部門セルロース材料グループ長の遠藤貴士様 に感謝の意を表します。

参考文献

1）磯貝明，＂TEMPO 酸化セルロースシングルナノファイバー複合材料＂，日本ゴム協会誌，85（12），26－ 31（2012）．
2）近藤哲男，＂水中カウンターコリジョン法によるセルロースナノファイバーの作製＂，日本ゴム協会誌， 85（12），38－43（2012）．
3）花ケ崎裕洋，小島洋治，遠藤貴士，＂化学修飾した竹由来リグノCNF の物性評価＂，広島県立総合技術研究所西部工業技術センター研究報告，60，4－7（2017）．
4）中西勉，＂親油性セルロースナノファイバー素材の開発＂，公益財団法人かがわ産業支援財団地域共同研究部ニュースレター，60，2－5（2020）．

5）Yasuko Saito，Takashi Endo，Daisuke Ando，Fumiaki Nakatsubo，and Hiroyuki Yano，＂Influence of drying process on reactivity of cellulose and xylan in acetylation of willow（Salix achwerinii E．L． Wolf）kraft pulp monitored by HSQC－NMR spectroscopy＂，Cellulose，25，6319－6331（2018）．
6）Daisuke Ando，Fumiaki Nakatsubo，and Hiroyuki Yano，＂Acetylation of Ground Pulp：Monitoring Acetylation via HSQC－NMR Spectroscopy＂，ACS Sustainable Chem．Eng．，5，1755－1762（2017）．

```
発 行（公財）かがわ産業支援財団 地域共同研究部〒761－0301 香川県高松市林町2217番地43
    TEL 087-869-3440 FAX 087-869-3441
    E-mail:rist@kagawa-isf.jp
    ホームページ:https//www.kagawa-isf.jp/rist//
```

発行日 令和3年6月

本誌から転載•複写する場合は，かがわ産業支援財団の許可を得てください。

